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Abstract— Human safety is critical in applications involving
close human-robot interactions (HRI) and is a key aspect
of physical compatibility between humans and robots. Less
attention has been paid to assessing safety in social navigation
settings where mobile robots and humans share the space. The
paper introduces a new proxemics-guided generalized safety
index (GSI) that instantaneously assesses human safety. It is
particularly useful for evaluating mobile robots as they operate
in social environments populated by multiple humans. The
framework integrates several key metrics, such as each human’s
relative distance, speed, and orientation. We extensively validate
GSI’s capability of producing appropriate and fine-grained safety
measures in real-world experimental scenarios and demonstrate
its superior efficacy against extant safety models.

I. INTRODUCTION

The study of human-robot interaction (HRI) and collabo-
ration has gained importance as more humans and robots
share workspaces and engage in proximal encounters [1], [2],
[3]. A substantial body of literature focuses on human safety
in industrial settings [4], [5], with established safety criteria
and guidelines for collaborative robots [6], [7], [8] including
industrial robot safety standards such as ISO 10218 and
ISO/TS 15066 [4], [9]. Researchers have also introduced real-
time safety assessments for large manipulators in human-robot
collaborations [10], [11], [7]. While appropriate for close
proximity and contact interactions, such as in manufacturing,
these safety standards and measures cannot be readily
transferred to mobile robots, which typically operate in
large, unbounded workspaces, where the mobility of humans
and robots significantly impacts human safety. Furthermore,
existing methods in the literature tend to underestimate safety
in multi-human environments. As such, there is a need for
scalable measures of safety that can be obtained from different
points of view (proprioceptive/exteroceptive) and for different
utilities, such as safety assessments and motion control.

In this paper, we derive a novel safety measure termed
the Generalized Safety Index (GSI) designed for mobile
robot applications that combines the impact of distance,
velocity, and the angular range (direction) between the
robot and nearby humans. GSI is a proxemics-guided fine-
grained safety assessment model, bounded between 0 and 1,
where 0 represents an unsafe condition and 1 indicates full
safety. Unlike existing safety scales that primarily focus on
short-distance collaborations between a single human and a
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manipulator, GSI extends to multi-human HRI settings by
prioritizing the safety of those at greater risk than averaging
across multiple humans. Notable, GSI is designed solely for
safety evaluation rather than active robot control, ensuring
an accurate assessment of human safety without dictating
motion responses. Together, GSI is amenable to being used
in large, crowded environments, making it a versatile tool for
safety analysis. These contributions are pivotal to motivating
and stimulating further innovations in the evaluation and
improvement of human safety around mobile robots.

II. RELATED WORK

Several models assess safety in HRI [12], but few address
safety for mobile robots in dynamic, human-shared environ-
ments [13]. One key concept in understanding human comfort
in such spaces is proxemics, introduced by Hall [14], which
defines four interpersonal spatial zones—intimate (0–0.46m),
personal (0.46–1.2m), social (1.2–3.7m), and public (¿3.7m).
These zones have been widely applied in HRI to model safe
interaction distances [15], [16]. Numerous findings involving
human subject studies [17], [18], [19] have corroborated that
humans perceive an interaction with an approaching robot
as safe if it can stop in the personal zone and unsafe if
it is (or about) to breach the intimate zone. Motivated by
these findings, an appropriate safety measure should provide
a granular value of safety level based on whether the robot
can stop within the public zone (safe) and never breach any
human’s intimate zone (unsafe).

Kulic and Croft [10] defined a Danger Index (DI) based on
a product formulation of human-robot distance and velocity
for safe trajectory planning in robot arms. Lacevic et al.
[20] developed the Kinetostatic Danger Field (KDF) for real-
time danger assessment and control adjustments. Lippi et
al. [11] extended the KDF to a human-safety assessment
(HSA) for multi-robot collaboration, adjusting paths based on
human proximity. Palmieri et al. [7] presented a human safety
field (HSF) control architecture to improve safety in shared
workspaces by adjusting manipulator trajectories. However,
these models are intended for single-human collaboration with
industrial manipulators and often fail in dynamic, unbounded
spaces in the context of social navigation, as the safety models
themselves are unbounded, requiring careful design for cut-
off thresholds. KDF, HSA, and HSF may allow extensions
to multiple humans but were not explicitly tested in their
respective studies. For instance, in HSF [7], the authors
mention the possibility of averaging the scale to aggregate
the safety of multiple humans. Also, in KDF and HSA, the



authors average the influence of multi-robots (multi-point
safety considerations) in the safety measure.

These models often use summative or product-based
formulations and do not scale well to unstructured, multi-
human environments. Averaging risk across multiple humans,
as suggested in HSF and KDF, can dilute critical safety
violations—e.g., one person in danger may be overshadowed
by others in safe zones—leading to misleading assessments.
To be effective in social navigation, safety models must
move beyond simplistic averaging and explicitly account
for proxemics and individual human risk contributions.

III. EVALUATING PROXIMICS-GUIDED HUMAN SAFETY

Let a mobile robot r with pose, pr “ xxr, θry where
xr “ pxr, yr, zrq, be positioned in conjunction with multiple
humans, thi|i “ 1 . . . Nhu where Nh is the number of
detected humans. Let a human hi be detected at a position
xhi “ pxi, yi, ziq in a common frame of reference. The frame
may be centered on the robot or global based on an external
observer. We assume that the robot’s motion constraints (e.g.,
maximum speed Vmax and maximum deceleration Amax) are
known, the robot has an RGB-D vision system to estimate
the relative distance and velocities between every detected
human and the robot, and the robot runs algorithms to detect
and localize multiple humans [21] within the sensor’s field
of view. The problem facing GSI is to determine the current
level of physical safety of all detected humans hi around the
robot r in its direction of travel θr.

A. Generalized Safety Index

In our framework, three key components are integrated to
assess the safety of every detected human: distance, relative
velocity, and the bearing of the human from the robot. These
measures are generally deemed sufficient for assessing safety
within the interaction space [8].

For each human hi at position xhi
in a common reference

frame, let dhi,r denote the distance from the robot, dhi,r “

}xhi
´ xr}2. The relative velocity between them is the first-

order derivative of the distance, vhi,r “ ´ 9dhi,r, which is
a positive value when the distance between human and
robot decreases and a negative value otherwise. Denote
the relative bearing of the human hi w.r.t. the robot as
θhi,r “ >pxhi ´ xrq ´ θr. To clarify, this bearing is the
angle (measured counterclockwise from the positive x-axis)
between the segment joining the robot to the human and the
robot’s current orientation θr.

Fig. 1: GSI aligns its safety scale with the well-established
proxemics ranges in HRI spaces. GSI takes a value of 1, indicating
safe (green) in the public space, (0 - 1] (amber) in the personal and
social spaces, and 0 (red) in the intimate space.

To arrive at a proxemics-guided safety scale, we rely on
the well-known concepts of intimate, personal, social, and
public spaces of human-robot interactions [14], which are
illustrated in Fig. 1. Generally, a human’s intimate space

was empirically determined to be a sphere of radius 0.46m
centered on the human, her personal and social spaces are
the spherical shells whose radius lies in (0.46m - 1.2m] and
(1.2-3.7m] ranges respectively, and the region beyond 3.7m is
considered a public space. Our approach is to assess human
safety based on where and whether the mobile robot intrudes
into these spaces (i.e., the stopping zone). Towards this, we
define a generalized safety index of a human hi as

zGSIhipdhi,r, vhi,r; ρq “
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—

—

–

dhi,r ´

ˆ

spvhi,rq
v2
hi,r

2Amax
` Dmin

˙

Dmax ´ Dmin

fi

ffi

ffi

fl

ρ

(1)
Here, Amax is a constant representing the maximum (de-

)acceleration of the robotic platform; Dmax is the distance
beyond which the human’s safety is assured – we may let
Dmax “ 3.7m (public space), and a mobile robot should
not come closer than Dmin – we may let Dmin “ 0.46m
(intimate space), or 0 if, for example, the robot needs to

transport the human. The term
v2
hi,r

2Amax
in (1) indicates the

distance required for the robot to stop at its current relative
speed vhi,r, given a maximum deceleration rate of Amax.
spvhi,rq is the sign function that informs whether the human
is approaching or moving away from the robot. The sign
function is positive when the distance between the human
and the robot decreases over time and negative otherwise.

The hyperparameter ρ ą 0 provides a way to fit GSI to
various kernels based on the current application setting and
the subjective human perception of safety. We may select
different values of ρ in applications involving GSI-aided
motion control, where higher ρ ą 1 decay of safety can be
appropriate in robots with slow reaction times or large mass
(i.e., a larger than usual buffer from the human is preferred for
more cautious human perceptions of safety or higher chances
of a platform failure to stop in fast motion settings [22].
Previous work has utilized a similar parameter for industrial
robots, where it is set to 2 [10]. On the other hand, lower
values of ρ ă 1 may be utilized if the human is comfortable
around mobile robots [23], reducing the need for unnecessary
interventions [10]. Finally, a balanced trend can be obtained
with ρ “ 1 providing a rational GSI [22], and therefore, we
use this setting (ρ “ 1) for assessing the current safety level.
Fig. 2 illustrates the impact of ρ on the GSI model.

Fig. 2: GSI can be fitted to various applications, robot platform
properties, and subjective safety perceptions of humans through
parameter ρ ą 0. For instance, ρ “ 1 is set for assessing safety,
ρ ą 1 for more cautious robot control, and ρ ă 1 for a more closer
interaction with human who are already comfortable.

In essence, zGSIhi
accounts for the robot’s ability to stop

before breaching the intimate zone of a human and we bound
it between 0 and 1, so any value less than 0 will be set
to 0 and any value greater than 1 is set to 1. A value “ 0



represents an unsafe condition (i.e., the intimate space has
or is about to be breached), while GSI “ 1 asserts a fully
safe condition (i.e., the robot is in the public zone). Any
value between 0 and 1 measures the safety level, closer to
0 indicates less safety, and higher risk to the human at that
point in time, whereas closer to 1 suggests that the human is
likely to be safe at that time.

Eq. 1 is applicable for a static scenario or if we assume
the robot and human are directly approaching each other, i.e.
θhi,r “ 0˝. For a non-zero bearing of the human w.r.t. the
robot, we extend Eq. 1 to scale the GSI with how close the
robot gets to the human as it passes by it. More specifically,
we obtain a directional GSI as given below,

GSIhi
pdhi,r, vhi,r, θhi,r; ρq “ 1 ´ p1 ´ zGSIhi

q cos θhi,r.
(2)

We illustrate the derivation of Eq. 2 using Fig. 3(a), which
shows that cos θhi,r can be used to scale the complement
of the GSI value that is obtained as if the robot is hea-
ding straight for the human. Notice that when θhi,r “ 0,
cos θhi,r “ 1 and GSIhi

pdhi,r, vhi,r, θhi,r; ρq collapses to
zGSIhi

pdhi,r, vhi,r; ρq as we may expect. And, if zGSIhi
p¨q

indicates not safe, then GSIhp¨q tempers down the non-safety
by how close the robot is expected to pass by the human.
Thus, GSI represents a dynamic measure of safety, integrating
real-time motion input to assess the human’s safety in the
shared workspace given the robot’s movement.

GSI for settings shared with multiple humans Implications
of robot motion on the safety of multiple humans (e.g.,
in crowded pedestrian areas [24]) are studied from motion
planning and physiological social awareness perspectives [13],
[25]. The presence of multiple humans in the shared
workspace complicates the determination of safety as we now
face an additional challenge: how to aggregate individual
safety indications to determine the safety of the whole.

Previous work (HSF [7]) advocates averaging individual
safety values in all humans. But, the disadvantage with it
is it may overestimate the overall safety when the robot is
safe for a majority of the humans in the group but unsafe
for a few in the shared space. Therefore, we posit that the
safety index for the whole should not only be directional
but should also attribute higher importance to the safety
of those humans for whom the robot presents significant
safety implications in its intended direction. Toward this, let
dh,r “ xdhi,r|i “ 1, . . . , Nhy represent the vector of relative
distances between the mobile robot and each human i in the
shared space and analogously vh,r and θh,r represent the
vector of relative velocities and angles, respectively. Rather
than simply returning the minimum of the GSIhp¨q values,
we utilize a smooth minimum LogSumExp (also known as the
realsoftmin) of the individual values, to obtain the collective
GSI for the group of Nh humans in the robot’s shared space.

GSIpdh,r,vh,r;θh,r; ρ, τq “

´ τ ln

˜
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¸

(3)

Fig. 3: An example setting with three humans in the vicinity
of the mobile robot r. GSI yields a directional safety value
for each human. In this example, GSIh1

“ 0.7 with θh1,r “

290˝, GSIh2 “ 0.9 with θh2,r “ 345˝, and GSIh3 “ 0.4
with θh3,r “ 30˝, each of which is calculated using Eq. 2.

where GSIhp¨q is as defined previously in Eq. 2 for a single
human in the vicinity, τ is a hyperparameter that controls
the smoothness of the approximation of the minimum of
the GSIhp¨q values. As τ reduces, GSI converges to the
minimum GSIhp¨q across all humans i. We set τ “ 0.01 for
obtaining close to the absolute minimum. The LogSumExp
function heavily penalizes larger GSIhp¨q, which makes it
sensitive to the small GSIhp¨q values, thereby obtaining a
safety index corresponding to the human that influences the
most. GSI in Eq. 3 satisfies the core properties of safety
measures [11], [20] such as a monotonic increase (decrease)
with distance (velocity) and differentiability. These properties
enable a differential safety scale that is useful in evaluating
and integrating mobile robot algorithms. We summarize GSI
for various scenarios in Table I and compare it with other
scales for appropriateness.

IV. EXPERIMENTAL EVALUATION

We conducted physical robot experiments with a Ubiquity
Magni platform customized for use in a medical evacuation
application and equipped with an Intel RealSense D435i
mounted in front, as we show in Fig. 4(a). We created a
multi-human scenario with three humans in the robot’s view
simultaneously. While the robot was stationary, the humans
followed various trajectories at regular walking speeds to
simulate a pedestrian walkway. This included: 1) Human 3
alone walks toward the robot and then moves away. Other
humans stay put; 2) Humans 1 and 2 walk toward the robot
while Human 3 stays put; 3) Human 3 walks toward the
robot while Humans 1 and 2 walk away; and 4) Random
movement of all humans. We show the distances, velocities,
and bearings of the three humans engaged in these behaviors
in Fig. 4. Scenarios A – F presented in Table I manifest
in these behaviors. These are marked in the three plots of
Fig. 4(b). We note that the measures correctly track as humans
move in the shared space, leading to the scenarios.

We compare the GSI safety scale (with ρ “ 1 and τ “ 0.01
as it is a service robot) with the existing KDF [20], HSF
[7], and HSA [11] considering the averaging approach for



TABLE I: A summarization of the appropriateness of different safety scales in various scenarios (combinations of distance dhi,r and
relative velocity vhi,r). The appropriate safety level is determined based on the stopping zone of the robot to the closest human (Fig. 1).
SH - single human. MH - multi-human. A ✓or ˆ indicates whether the scale may correctly inform the appropriate safety level per the
proxemics framework. Ò and Ó denote the possibility of overestimating or underestimating the safety levels, respectively.

Scenario Distance Relative Velocity Stopping Zone Appropriate Assessment GSI [Ours] DI [10] KDF [20] HSF [7] HSA [11]
SH MH SH MH SH MH SH MH SH MH

A dhi,r ě Dmax vhi,r ď 0 Public Safe ✓ ✓ ✓ N/A ✓ ✓ ✓ ✓ ✓ ✓

B dhi,r ě pDmax `
v2
hi,r

2Amax
q vhi,r ě 0 Public Safe ✓ ✓ ✓ N/A ✓ ✓ ✓ ✓ ✓ ✓

C dhi,r ě Dmax 0 ă v2hi,r
ă 2Amaxpdhi,r ´ Dminq Within Personal/Social Between ✓ ✓ ˆ Ò N/A ✓ ✓ ˆ Ò ˆ Ò ✓ ✓

D Dmin ď dhi,r ď Dmax vhi,r “ 0 Within Personal/Social Between ✓ ✓ ˆ Ò N/A ✓ ˆ Ò ✓ ✓ ✓ ✓
E dhi,r ě Dmax v2hi,r

ě 2Amaxpdhi,r ´ Dminq Intimate Unsafe ✓ ✓ ˆ Ò N/A ✓ ˆ Ò ˆ Ò ˆ Ò ˆ Ò ˆ Ò

F dhi,r ď pDmin `
v2
hi,r

2Amax
q vhi,r ě 0 Intimate Unsafe ✓ ✓ ✓ N/A ✓ ✓ ✓ ✓ ✓ ✓

G Dmin ď dhi,r ď Dmax v2hi,r
ď ´2AmaxpDmax ´ dhi,rq Public Safe ✓ ✓ ✓ N/A ˆ Ó ˆ Ó ˆ Ó ˆ Ó ˆ Ó ˆ Ó

(a)
(b)

Fig. 4: (a) Setting for the physical robot experiment involving GSI
on an Ubiquity Magni which is sharing space with three moving
humans. (b) Validation of distances dh,r , relative velocities vh,r ,
and bearings θh,r of the three humans.

A B F1 C D1D2F2 D3

Fig. 5: Output of safety scales from the robot’s viewpoint applicable
to multiple humans in our experiments with three humans.

safety calculations in a multi-human environment per their
designs. For comparison, we invert the KDF values as it is a
danger scale (similar to DI) and normalize the HSF values
by Dmax as it relies solely on the distance factor.

Observe from Fig. 5 that KDF and HSF report safety
values that are much higher than GSI. This is because of
the averaging used by these scales that generally lift safety
value when few but several humans are safe. For example,
as Human 3 approaches the robot, where Humans 1 and 2

stay put, which corresponds to scenario F1 depicting Human
3 breaching the intimate zone according to proxemics, KDF,
HSF, and HSA reduce, but not as much as GSI. The latter’s
overall safety assessment emphasizes approaching humans
over others, per proxemics.

Another stark distinction between the four safety assess-
ments is in scenarios D1 and F2, when Humans 1 and
2 are walking away while Human 3 is approaching (D1

depicting reaching personal/social zone) and when just Human
3 remains in the robot’s viewable range and according to
proxemics the robot is nearing the human’s intimate space
(F2). While all assessments drop, the impact of Humans 1
and 2 walking back is much more on KDF and HSF, while
GSI remains sensitive to the approaching human. On the
other hand, the presence of a robot in close proximity to the
human in F2 causes all scales to report low safety values.

In scenario E (Table I), the relative velocity is significantly
high (positive), and the robot cannot stop without breaching
the human’s intimate space, classifying the situation as
unsafe. Conversely, in scenario G, if the robot is moving
away from the human with high velocity (negative), the
scenario is considered safe. Existing safety scales, such as
KDF and HSA, which assign four times greater weight to
distance than velocity, or HSF, which relies solely on distance,
tend to misinterpret safety levels in such cases, leading to
false assessments. Due to our robot platform’s inability to
generate high-velocity movements, these two scenarios are not
observed in the data. Based on this detailed analysis, we note
that GSI conforms to the proxemics framework, departing
from the extant scales such as KDF, HSF, and HSA, even in
contexts involving multiple humans. Indeed, KDF and HSF
appear to consistently overestimate the overall safety of the
situation, whereas GSI offers more specificity in assessing the
appropriate safety of the robot operating in social settings.

V. CONCLUSION

We presented a new proxemics-guided safety assessment
model (GSI) for mobile robots operating in a multi-human
environment. This is integrated with an RGB-D camera-
based safety assessment framework, which uses the GSI
model to perform real-time safety assessments and allows
multiple endpoint use. Physical robot experiments confirmed
the validity of the model and its utility compared to other
existing safety scales. The contributions in this work will
help advance safety-aware algorithms and motion planners
in human-rich mobile robot applications.
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